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Abstract
We report in situ high-pressure studies up to 1.0 GPa on MgB2 superconductor
which had been synthesized at high pressure. The as-prepared sample is
of high quality as regards having a sharp superconducting transition (Tc)
at 39 K. The in situ high-pressure measurements were carried out using
a Be–Cu piston–cylinder-type instrument with a mixed oil as the pressure-
transmitting medium, which provides a quasi-hydrostatic pressure environment
at low temperature. The superconducting transitions were measured using the
electrical conductance method. It is found that Tc increases with pressure in
the initial pressure range, leading to a parabolic-like Tc–P evolution.

1. Introduction

The discovery of 39 K superconductivity in MgB2 [1] has raised interest in the intermetallic
compounds considerably. MgB2 has the highest Tc ever reached in an intermetallic compound.
MgB2 crystallizes into the so-called AlB2 structure which forms honeycomb-like B layers
alternating with Mg layers as shown in figure 1. Generally, it is believed that MgB2 is a
BCS-like conventional superconductor but with unusual phonon–electron structures, which
consequently may give rise to the high Tc of binary boride. Theoretical works indicate that
the electronic structure at the Fermi level is primarily of boron character, e.g. B σ(spx py) is
believed to offer hole-like conducting carriers while Mg2+ lowers the nonbonding B π(pz)

causing σ → π charge transfer [2]. MgB2 can be made at ambient conditions, but high-
pressure synthesis has proven to be much effective as regards getting high-quality bulk samples
(sharp transition, improved intergrain links and higher critical current density) [3, 4]. As an
effective way to investigate modulation of the transition temperature and to test the theoretical
prediction, in situ high-pressure experiments were performed by several groups [5]. They
all found that the transition temperature of MgB2 decreases with increasing pressure, which
implies a crucial role for the phonon-mediated pairing mechanism in the MgB2 superconductor.
dTc/dP at lower pressure (∼2.0 GPa) was found to be −1.0 to −2.0 K GPa−1. This is in
agreement with the expectations within the traditional framework of BCS theory, where the
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Figure 1. The crystal structure of MgB2. Figure 2. The powder x-ray diffraction pattern of the
MgB2 sample synthesized under high pressure.

stiffening phonon frequency will decrease Tc. The theoretical calculation indicates that it is
a combination of increasing phonon frequency and decreasing electronic density of states at
the Fermi level which leads to the observed decrease of the critical temperature under pressure
within the context of BCS theory [6, 7]. However, Hirsch et al [8] proposed a novel hole
superconducting mechanism which predicts the increase of Tc with pressure in MgB2. Here
we report experimental results of in situ high-pressure studies of the change in Tc for MgB2

superconductor which had been synthesized at high pressure directly from the elements.

2. Experimental details

The MgB2 sample was directly synthesized from the elements Mg and B under high pressure.
Mg (99% purity) and B (5 N purity, 300 mesh) powders were used as the starting materials.
The carefully mixed powder, in the stoichiometric molar ratio Mg:B = 1:2, was subjected to
high pressure synthesis. The product was released from the high pressure and then quenched
from high temperature. The high-pressure synthesis was carried out using a cubic-anvil-
type high-pressure apparatus. Pyrophyllite was used as the pressure-transmitting medium and
graphite tubes as the electric heater. Details of the sample preparation are described in [4].
The sample obtained was checked using powder x-ray diffraction to confirm the phase purity.
The superconductivity was checked by magnetic susceptibility measurements using a SQUID
magnetometer and by electrical measurements using the four-probe method. The in situ high-
pressure measurements were performed using a piston–cylinder-typeapparatus. The apparatus
is made of Be–Cu with a kind of mixed silicon oil and kerosene as the pressure-transmitting
media, which provide a good quasi-hydrostatic environment at low temperature. The pressure
was first loaded at room temperature and then screw-locked. The pressure and temperature
were calibrated using the well known superconducting transition point of Pb metal. The
low-temperature experiments were carried out in a Dewar. The temperature was read from
a RhFe thermometer. In view of the high electrical conductivity of MgB2, a high resolution
linear research type digital ac bridge (accuracy better than 0.1 m�) was used to carry out the
four-probe measurements with a 1 mA measuring current. The sample was measured in both
cooling and heating processes at a very slow rate, e.g. 2–3 h between the transition processes
(10 K below and above Tc), to ensure a better thermal equilibrium state at each temperature.
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Figure 3. The R–T relation of the MgB2 sample. Figure 4. The dc magnetic susceptibility of MgB2
superconductor as a function of temperature in both ZFC
and FC modes.

3. Experimental results and discussion

Figure 2 shows the powder x-ray diffraction pattern of the high-pressure-synthesized MgB2

sample. The major phase of the sample can be indexed to MgB2 with the AlB2 structure,
but a small amount of MgO impurity was also present. Figure 3 shows the resistivity versus
temperature for the sample, showing the superconducting transition around Tc (39 K) with a
transition width less than 1 K.

Figure 4 shows the dc magnetic susceptibility versus temperature for both zero-field-
cooling (ZFC) and field-cooling (FC) modes in a 20 Oe applied field obtained using a Quantum
Design SQUID magnetometer. It indicates that a sharp superconducting transition occurred at
Tc equal to 39 K. The nearly flat ZFC curve up to 35 K and the large disparity between the ZFC
and FC signals imply bulk superconductivity and improved intergrain links in the high-pressure-
synthesized MgB2 sample. We adopted the sample to make further in situ measurements of
the resistivity versus temperature at various pressures up to ∼1.0 GPa. Figure 5 shows the
R–T curves around Tc for the sample at various pressures up to ∼1.0 GPa. The shifts of
the superconducting transition with pressure are clearly visible. It is noted that the transition
shifts monotonically to high temperature as pressure increases from ambient to ∼0.5 GPa
before it shifts back with further increasing pressure. Figure 6 plots the change of Tc (the
temperature at which the conductivity shows a sudden jump during the slow heating process)
with pressure. The tendency shown in figure 6 is different from those of the experimental results
in [5]. We repeated the measurements using a second high-pressure sample and got similar
results. We will try to provide a possible explanation for this phenomenon. The relatively
strong Mg–B bonding and the change in B–B bonding may responsible for the increase of Tc

in some pressure region. The high-pressure strain resulting from the high-pressure synthesis
may lead to complex behaviour in in situ pressure measurements. The intercalation of some
organic molecules or clusters from the pressure-transmitting oil may possibly increase the
a-axis dimension and consequently give rise to a higher Tc according to the calculation of [6].
The uniaxial pressing of the sample may result in the c-axis being under compression while
the a-axis is being stretched and consequently raise Tc [6]. Moreover, the superconducting
hole mechanism proposed by Hirsch et al supports the current experimental results. However,
in order to make clear the physical origin, further experiments such as ones using different
pressure-transmitting media are needed.

In summary, we observed Tc increasing with applied pressure in a MgB2 sample which had
been synthesized at high pressure directly from the elements. A parabolic-like Tc–P relation
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Figure 5. The superconducting transitions for various
applied pressures.

Figure 6. The dependence of Tc for MgB2
superconductor on the applied pressure.

was found. The enhancement of Tc by more than 1 K in the experiments means that it becomes
the highest superconducting transition temperature recorded so far for MgB2 superconductor.
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